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SUMMARY 

The elution curve in linear chromatography has been derived from the assump- 
tion that the distribution of sari?ple alon g the column is normal. From this normal 
distribution, the elution curve (the distribution of sample as a function of time) can 
easily be derived. This approach gives nearly the same result as other, mathematically 
more complex, derivations. 

INTRODUCTION 

Recently, the shape and the statistical moments of the elution curve-have been 
thoroughly studiedlm3. Even in the simplest case of a linear isotherm and complete 
equilibrium, the mathematical solutions to the problem of the elution curve are fairly 
complicated and lead to unsymmetrical peak shapes. However, the old and simple 
derivation of the molecular distribution along the column as a symmetrical normal 
curve of error is available4~‘. It has been pointed out that this leads to an unsymmet- 
rical elution curve (the curve which is, for example, drawn by a recorder)6. 

The purpose of the present work is to derive the equation of the elution curve, 
under the assumption that the distribution of molecules along the column is normal 
(Gaussian). It will be shown that this approach leads to a solution which is very 
similar to other solutions from mathematically more complex derivations. 

THEORETICAL 

Suppose that the distribution of molecules along the column (column profile) 
is given by: 

Pew) = _L 
42zb’t 

. exp [ _ (x - vt)z 
2b2t 1 

(1) 

Here P(x,t) is the concentration on the column (number of molecules per unit length), 
A is the number of injected molecules, x is the room coordinate (distance from the 
column inlet) and t is the time. For a given t, eqn. 1 represent a normal distribution 
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(where x is the independent variable, vt is the mean and b2t is the variance) moving 
along the column with a linear speed V, and at the same time broadening proportional 
to 4. 

If x = a, where LI is the length of the column, the distribution of molecules 
at the outlet of the column as a function of time is given by: 

P&t) = 
A 

g&&2t - exp [ 
(a - vt)2 

- 2b’t 1 (2) 

The retention time is the time for the maximum (and also for the centre of gravity 
and the median) of the Gaussian column profile to reach the end of the columnJ. 
Thus : 

By definition, the number of theoretical plates, 12, is given by: 

Eqn. 2 can be transformed into: 

V 
-_ 

P(q) = 6 - -q$ - n 

exp - [ ~ - (tR - t,2] 
2t,-r 

The last part of the column (between a - d_~ and a) contains P(a,t) - dx molecules. If 
these molecules are eluted during the time interval dt, the function Q(t) = P(a,t) - d-r/dt 
will describe the number of molecules per unit time which are eluted from the column. 
The quantity dx/dt is the linear speed by which the sample molecules pass the last 
part of the column. This speed is greater for moiecules which are eluted before the 
peak centre than for those which are eluted after the centre due to the peak broadening 
process. 

Fig. 1 shows a room-time diagram intended to clarify this point. The line AB 
shows how the maximum of the Gaussian peak travels through the column: _Y = vt. 
A family of curves 

_x = vt + q-62/i (6) 

can be constructed, describing how different parts of the peak travel through the 
column (AC, AD). Here 4 is the number of standard deviations (647) from the mean. 
For a given 4, the area of the peak in the interval (vt, vt + 4-b. d/i) will be the same, 
independent oft. Thus for any q the area of the peak is divided into two parts, each 
having a constant area throughout the column. Differentiation of eqn. 6 yields 
dxldt = Y + q-b/Zti. At the end of the column, a = vt + q-62/5; q = (a-vt)lbfl. 
Thus, dx/dt = v/2 i_ a/2t or, with eqn. 3, d_r/dt = a/2t, t a/2t. Multiplication of 
this expression for dx/dt by eqn. 5 gives 

(7) 
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Fig. 1. Room-time diagram. For details see text. 

which describes the distribution of the molecules as a function of time expressed as 
the number of molecules per unit time. This is the elution curve, which will be sensed 
by the detector and drawn on a recorder if the moving distribution along the column 
is normal (Gaussian). 

Eqn. 7 can be written as 

Q(t) = + - (I 

where : 

t’(t) = a 
d2,zb2t3 

t 
f- 

tR ) - f(t) (8) 

[ 
(a - vt)2 

- exp - - 2b2t I 
For the function f(t) above, Wasan’ has given a formula for the calculation of the rth 
zero-point moment a, : 

Thus, zero-point moments and, by conventional procedures, central moments for the 
distribution in eqn. 7 can be calculated: 



c,= t; - 
i 

3 45 633 
-? + 2.,23 

-+- 
n- 16-d i 

Here c, is the rth central moment. The 
culated from : 

m = tR(l i_ &) 
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(10) 

mean, m (first zero-point moment), is cal- 

(11) 

Parameters of interest are also the skew (g,) and the excess (gZ)_ They are defined as: 

g, =c3- 
c3/’ ’ g+-3 (12) 

Z 

It is interesting to study the moments and related quantities since the relations 
between them characterize the shape of the elution curve. Several workerG have 
found the following relations 

15 
andg, =; (13) 

which have been experimentaily tested2. If eqns. 10 and 12 are combined, the following 
expressions result for the elution curve described in eqn. 7: 

(14) 

g2 = z+ 483 -g 

5 25 
n2 f ?n -i G 

Table I shows the effect of inserting a value of n = 500 into eqns. 13 and 14 to show 
the differences between these relations. 

It is to be noted that, if the derivation of the elution curve is made under the 
assumption that d_y/dt = a/t, a slightly different function than that in eqn. 7 results. 
This (questionable) function has exactly the same properties as given by eqn. 13. As 
can be seen from Table I, the differences between eqns. 13 and 14 are for most uses 
negligible. The second function can therefore be used and is given by: 

R(t) = A V 9 
- exp [ 

II 

- - - OR - e] 2*.TR (15) 
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TABLE I 

COMPENSATION OF TWO DIFFERENT EXPRESSIONS FOR SKEW AND EXCESS 
(n = 500) 

g1 
gz 

From eqn. I3 From eqn. I4 

0.13416 0.13415 
0.030 0.0319 

The parameters which are most usually calculated from an experimental 
chromatogram are the retention time, the number of theoretical plates, the skew and 
the excess. For this, the experimental parameters fi and Ez - & are usually calculated 
according to the following formulae8 

where xi and yi are the coordinates for points on the chromatogram and r = 2,3, or 4. 

Determination of the retention time tR 
Usually, the retention time tR is determined either from the mean t$i or the 

x coordinate of the maximum. From eqn. 11 it can be seen that: 

tR= m 
1+& 

(17) 

The error, assuming r, = ril, is thus 0.1% if n = 500. If the accuracy of the measure- 
ments justifies this, n can be calculated (see below) and inserted into eqn. 17 to 
obtain, a more accurate value of tR_ 

In order to obtain the x coordinate of the maximum, eqn. 7 is differentiated 
to give: 

x A n-t, 1 
dt =2- 2 

- t;+ t-t; 
C 

( 1 - ;) - t2tR(1 i_ ;, - tq 

(18) 

If this is equated with 0, a third-degree equation results. The non-imaginary solution 
is close to: 

t max. = rR(l - +) (19) 

The error, assuming n = 500, is O-2%, if the maximum of the elution curve t,,,_ 

is used as an estimation of rR. 

Determination of n 
n is usually calculated from P%~/&_ According to the above theory 
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where the two last terms are negligible for realistic values of n, making the calculation 
of n from &‘jZl quite acceptable. 

CONCLUSION 

It has been shown that, if a normal (Gaussian) distribution of molecules along 
the column (column profile) is assumed, it is possible and relatively easy to deduce 
the equation for the elution curve (exactly in eqn. 7, approximately in eqn. 15). This 
elution curve has the following properties. Neither the maximum point nor the first 
moment corresponds exactly to the retention time (defined as the time when the 
maximum of the column profile appears at the outlet). The discrepancy is small 
(eqns. 17 and 19) and can be corrected for if the number of theoretical plates is known. 
The latter can be calculated from eqn. 20. 

It should be noted that, for the case of a linear isotherm and complete equi- 
librium, the mathematical form for the column profile is much more simpie than for 
the elution curve, and this behaviour is probably general. It is believed that, if it were 
possible to find, in the general case, a transformation from the elution curve to the 
column profile (to change the independent variable from time to distance from the 
column inlet) and vice versa, the equations for the chromatographic peaks could be 
more easily derived as column profiles and transformed into elution curves. Alter- 
natively, the experimental elution data could be transformed and compared with 
theoretically derived column profiles. 
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